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ABSTRACT
In many cases, the predictions of machine learning interatomic potentials (MLIPs) can be interpreted as a sum of body-ordered contributions,
which is explicit when the model is directly built on neighbor density correlation descriptors and is implicit when the model captures the cor-
relations through the non-linear functions of low body-order terms. In both cases, the “effective body-orderedness” of MLIPs remains largely
unexplained: how do the models decompose the total energy into body-ordered contributions, and how does their body-orderedness affect
the accuracy and learning behavior? In answering these questions, we first discuss the complexities in imposing the many-body expansion
on ab initio calculations at the atomic limit. Next, we train a curated set of MLIPs on datasets of hydrogen clusters and reveal the inherent
tendency of the ML models to deduce their own, effective body-order trends, which are dependent on the model type and dataset makeup.
Finally, we present different trends in the convergence of the body-orders and generalizability of the models, providing useful insights into
the development of future MLIPs.

© 2026 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0303302

I. INTRODUCTION

The many-body expansion (MBE) expresses the global observ-
able of a chemical system as a sum of contributions from interactions
at different body-orders, where the “bodies” are taken to be atoms,
molecules, or larger fragments in the system. The MBE enables the
interpretation of complex interactions in terms of simpler body-
ordered contributions and can provide reasonable approximations
to the global quantity, especially when the contributions decay
rapidly with the number of bodies involved. The MBE has given rise
to many local or fragment-based quantum chemistry methods1–9

that offer favorable scaling for large systems, as well as force fields
that can be used for atomic scale simulations at large length and time
scales.10–12

Machine learning interatomic potentials (MLIPs)13–17 enable
ab initio-quality atomistic simulations with linear system size scaling
and low prefactors, further extending the accessible length and time
scales of the simulations. MLIPs commonly adopt a locality ansatz
based on the nearsightedness principle18,19 and represent the local
environments of chemical systems in terms of body-ordered corre-
lations between the central atom and its neighbors.20–22 This allows
MLIPs to effectively capture the complex many-body interactions
while retaining favorable scalability and transferability.

Here, one could draw a parallel between the MBE interpretation
of physical observables and the correlation-based atomic represen-
tations of common MLIPs. Within this parallel, a paradox also
emerges: how do the MLIPs make accurate predictions with a limited
set of atomic body-order correlations, despite the MBE being exact
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only in the limit of all body-ordered contributions in the system
(with their count approaching infinity in bulk systems)? This high-
lights a deeper gap in our understanding of the “body-orderedness”
of MLIPs and its implications for their performance and learning
behavior, especially for recent graph neural network (NN)-based
models where the body-ordered correlations are implicit and their
contributions are non-separable.

In this study, we systematically analyze the body-orderedness
of NN-based MLIPs and the resulting learning behavior. First,
we revisit the trends in the MBE of ab initio calculations, which
commonly serve as a reference for machine learning interatomic
potential (MLIP) training, at the atomic limit. Next, we train a
curated set of MLIPs on datasets of hydrogen clusters to investi-
gate how the models infer body-order trends of hydrogen23,24 and
how they compare to the reference. We further explore how the
trends vary between the different MLIPs and dataset makeup and
discuss how they may affect model accuracy and learning behav-
ior. Finally, we consider the relationship between the body-ordered
energetics and the out-of-distribution accuracy or generalizability of
MLIPs.

II. THEORY AND METHODS
A. Parallelism between the MBE
and the body-orderedness of MLIPs

In applying the MBE at the atomic limit, the total energy EA of
system A with N atoms is expressed as

EA(r1, r2, . . . , rN) =∑
i

V(1) +∑
i<j

V(2)(ri, rj)

+ ∑

i<j<k
V(3)(ri, rj , rk) + ⋅ ⋅ ⋅

+ V(N)(r1, r2, . . . , rN), (1)

for atoms i, j, k . . . ∈ A and their coordinates r. The summations
run over the canonically complete set of lower body-ordered “sub-
clusters” that can be identified within A. The mth body-ordered
energy contribution V (m) from a sub-cluster with m atoms can
be expressed in terms of its total energy E(m) minus all the lower
body-order terms,

V(m)(r1, r2, . . . , rm) = E(m)(r1, r2, . . . , rm)

− ∑

1≤k<m
∑

i′<j′<...<k′
V(k)(ri′ , rj′ , . . . , rk′).

(2)
In the second term, the inner sum is the same as those in Eq. (1),
and the outer sum runs over all body-orders k lower than m. Here,
we interpret V (1) to be E1, the energy of an isolated atom. For m = 3,

V(3)(r1, r2, r3) = E(3)(r1, r2, r3) − 3E1 − V(2)(r1, r2)

− V(2)(r1, r3) − V(2)(r2, r3). (3)

The number of canonically complete sub-clusters for a given m is
N!/(m!(N −m)!) and is the largest for m ≈ N/2. The body-ordered

(negative) force contribution ∂V (m)
/∂ri can be further derived from

Eq. (2) as follows:

∂V(m)

∂ri
=
∂E(m)

∂ri
− ∑

2≤k<m
∑

i′′<j′′<...<k′′

∂V(k)(ri′′ , rj′′ , . . . , rk′′)

∂ri
.

(4)
∂V (m)

/∂ri is a local quantity for atom i, and the inner summation
runs over the neighboring atoms of i.

The locality ansatz of MLIPs leads to the following expression
for the predicted total energy ẼA:

ẼA =∑
i∈A

εi =∑
i∈A

εi({rij}j∈Ai). (5)

εi is the “local” energy associated with atom i, and it is a function of
the local geometry described via rij = ri − rj for all j in Ai, the local
environment of atom i. The MLIPs differ in the functional form used
to predict εi, which usually involves combining multiple rij terms
to describe higher body-order correlations.21,25 Among the models,
there exists a subset15,16 where features that formally depend on a
fixed number of neighbors are used as the polynomial basis for a
linear expansion,

εi =∑
ν

ϕν({rij}j∈Ai) ⋅wν. (6)

Here, ν is the “correlation order” involving multiple neighbor atoms
j (then, body order equals ν + 1). The expression tells us that the
predicted energy can be explicitly decomposed into body-ordered
contributions. Despite the apparent parallel with the MBE [Eq. (1)],
previous studies26–28 have shown that there does not exist a 1-
to-1 correspondence between the two because ϕν also contains
terms associated with lower body-order correlations, unless they are
explicitly elimintated27 (see Appendix A).

In this study, we focus on the NN-based MLIPs, which have
shown greater accuracies for much larger portions of the chemical
space,29–32 yet their body-orderedness has never been considered in
detail. For the NN-based models, εi often involves nonlinearities that
make it challenging to derive an analytical connection to the MBE.
One of such models is the Behler–Parrinello NN (BPNN),13 where
the local descriptors of 2- and 3-body correlations are taken as inputs
to a fully connected feed-forward network that predicts εi, which are
then summed across the system to obtain the total energy. Here, we
specifically consider SOAP-BPNN, which adopts the Smooth Over-
lap of Atomic Position (SOAP)33 as the local descriptor of choice.
Starting from the 3-body SOAP descriptors, SOAP-BPNN implicitly
reaches higher body-orders through multiple NN layers and nonlin-
ear activation functions. Since SOAP is an incomplete descriptor,34

the resulting SOAP-BPNN descriptor also exhibits incompleteness
at higher body-orders.

More recent MLIPs incorporate message-passing NNs35 and
transformers36 in their architectures. One example that we con-
sider is MACE,37 an equivariant message-passing NN-based MLIP
grounded in the atomic cluster expansion (ACE) formalism.16

In MACE, each layer describes the body-order correlations of
the given atomic environment up to ν = 3. Equivariant message
passing effectively introduces a new one-particle basis, raising
ν by 1.25 With two of such layers, MACE explicitly achieves a
maximum body-order of 13.38 Finally, we consider the point-edge
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transformer (PET),39 a transformer-based model that does not
enforce exact rotational symmetry. In PET, the softmax function
used in the attention mechanism, as well as the activation functions
in the feedforward blocks, implicitly leads to a theoretically infinite
body-order.

Even though there is no explicit decomposition of the pre-
dictions of these nonlinear NN-based MLIPs into body-ordered
contributions, the connection is quite strong, with low-order cor-
relations being used as inputs to internal operations that ulti-
mately raise the body-order perceived by the model. It is, there-
fore, interesting to compute, empirically through Eqs. (2) and
(4), how the MBE of the trained models compares to that of
the reference electronic structure methods, how it depends on
the training details, and how it affects the transferability of the
models.

B. Hydrogen cluster sampling and calculation details
In this study, we construct and utilize the datasets of hydro-

gen octamers (8-mers) for MLIP training and analysis. Given the
simple electronic structure of hydrogen, this ensures that the anal-
ysis can be focused on the body-order-specific effects as much as
possible and reduces the cost of calculations that probe the body-
ordered energetics beyond the density functional theory (DFT) level
(see Sec. III).

The 8-mers are sampled from the bulk hydrogen datasets of
Cheng et al.23 We construct two distinct datasets: a “high density”
(high ρ) dataset, in which the clusters are sampled from 100 con-
figurations with the highest density (average ρ = 1.34 g/cm3), and
a “low density” (low ρ) dataset, where the clusters are sampled from
100 configurations with the lowest density (average ρ = 0.461 g/cm3).
In the high ρ dataset, each 8-mer is sampled by choosing a hydro-
gen at random from a given configuration and then taking its seven
nearest neighbors. In the low ρ dataset, sampling is performed by
taking a random hydrogen atom and its closest neighbor and then
adding three nearest pairs of atoms to complete the 8-mer. Exam-
ple clusters are shown in Fig. 1. Such a difference in the sampling
protocol ensures the sampling of distinct chemical trends seen in
the corresponding bulk phases, where high ρ systems are atomic,
covalently bound, and metallic, and low ρ systems are molecu-
lar, bound by non-covalent interactions, and insulating. From each
dataset, we randomly select 500 clusters, for which we also create the
accompanying datasets containing canonically complete sets of their
sub-clusters.

To obtain the energies and forces for MLIP training,
DFT calculations are performed using FHI-aims.40 The PBE
exchange–correlation functional41 is employed with the “tight”
species-default basis set, and Gaussian smearing with σ = 0.025 eV
is used to determine the occupations. To assess the body-ordered
energetics of hydrogen clusters at a much higher level of the-
ory, we also perform spin-adapted density matrix renormalization
group (DMRG) calculations42 using BLOCK243 on a few represen-
tative clusters, using one- and two-electron integrals generated by
PYSCF.44,45 During method investigation, coupled-cluster with sin-
gle, double, and triple excitations (CCSDT) calculations were also
carried out in Q-CHEM46 for internal checks. Further details of the
cluster sampling protocol and the reference calculations are given in
the supplementary material.

FIG. 1. Body-ordered energetics and spin–spin correlations for a sample low ρ
8-mer (left) and a sample high ρ 8-mer (right). The atomic configurations of the
sampled clusters are presented in the first row. Plots of the body-ordered energet-
ics probed by Ṽ(m)

A of Eq. (7) are presented in the second row for the DFT and
DMRG calculations. The spin–spin correlation results in the third row are obtained
from DMRG calculations and are plotted in a symmetric log scale with a linearity
threshold of 10−4. Atomic indices used in these plots are shown in the first row.

C. MLIP training details
We consider three NN-based models widely varying in their

architectures: SOAP-BPNN, MACE, and PET. In all cases, models
are trained via stochastic gradient descent with the Adam opti-
mizer47 on the mean squared loss of energies and forces. Train,
validation, and test splits of the datasets are kept consistent between
the models. We set a consistent cutoff radius of 5.5 Å in all three
models, which corresponds to the value used in the MLIPs devel-
oped in the previous work and encompasses the entire cluster.23 In
SOAP-BPNN and MACE, the baseline energy, i.e., the energy of the
isolated atom as perceived by the model, is fixed to the reference iso-
lated atom energy. In PET, the existence of central tokens and their
incorporation into the attention mechanism prevent the model from
having a strict, pre-defined baseline. Instead, we take a data-driven
approach and include an isolated atom reference configuration in
the training sets for PET, allowing the model to learn an isolated
atom energy to a good accuracy (<0.01 eV from the reference value).
We note that any deviation in the learned isolated atom energy from
the reference may give PET a small advantage in the learning tasks.
We have seen, however, that allowing the MLIPs to adjust freely
their baseline energy does not significantly impact our observations
(see the supplementary material). The ratio between the energy and
force losses is fixed at 1:1 for SOAP-BPNN and PET. For MACE,
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we adopt its default training routine, which is to use a 1:100 ratio
between energy and force losses in the first stage and 1000:100 in
the second stage. The rest of the training details and hyperparame-
ters are set to the defaults of the models. Full sets of the inputs and
hyperparameters are provided in our Materials Cloud repository.48

III. BODY-ORDERED ENERGETICS
OF HYDROGEN CLUSTERS

Before any MLIP analysis, we first evaluate the body-ordered
energetics of hydrogen 8-mers in the reference ab initio calcula-
tions. In many cases, the MBE formalism is applied at the molec-
ular level,49–51 where V (m) is expected to converge quickly to zero
with increasing m. An archetypal system is water,52–61 for which
many-body force fields have shown good accuracies with limited
body-orders, up to four, including also a polarizable model base-
line. Even for water, however, body-ordered energetics at the DFT
theory-level can converge slowly and show large oscillations when
ions are introduced.62,63 In the context of MLIPs and their body-
orders, where body-ordered correlations or other geometric features
are computed between atoms, the consistent scale at which to apply
the MBE formalism is also that of individual atoms. At the atomic
level, where covalent and metallic interactions dominate, even more
complex and non-trivial trends have been previously observed for
mercury, sodium, silicon, and gold.64,65

Here, we quantify the atomic MBE convergence for the hydro-
gen 8-mers used in this study. For all body-orders from 2 to 8, we
compute

Ṽ(m)A =

∑i<j<...<m V(m)(ri, rj , . . . , rm)
N!

m!(N−m)! ⋅m
. (7)

For each m, energy contributions from the canonically complete set
of m-mers are summed and then normalized by their total count
and m to yield the average body-ordered energy contribution, per
atom. This allows for a “fair” comparison between the body-ordered

contributions without any effects associated with the number of sub-
clusters, which is largest when m ≈ N/2. The resulting trends for
sample 8-mers from low ρ and high ρ datasets are shown in Fig. 1.

In both cases, an oscillatory and divergent trend is observed in
the DFT body-ordered energetics (black markers). A negative energy
contribution is first observed at m = 2 and then a larger positive con-
tribution at m = 3, and the sign of Ṽ(m)A continues to alternate with
the magnitude increasing with m. The anticipated chemical trend
between the low ρ and high ρ 8-mers is manifested as a difference
in the magnitudes of Ṽ(m)A across all m, with larger contributions
observed for the high ρ 8-mers over the low ρ 8-mers. Similar trends
persist with the exact correlation treatment using DMRG, revealing
that the apparent trend is not a mere consequence of the approxi-
mate nature of DFT63 (see Appendix B for further consideration of
the DFT self-interaction error).

Previously, long-range many-body interactions have been
observed in 1D hydrogen chains of up to 50 atoms,66 where strong
antiferromagnetic (AFM) spin–spin correlations are present. Here,
we also analyze spin–spin correlations Cij for representative 8-
mers in three spatial dimensions, where Cij = ⟨n̂i↑n̂j↓⟩ − ⟨n̂i↑⟩⟨n̂j↓⟩.
Figure 1 shows that both low and high ρ 8-mers display substantial
spin–spin correlations across all atomic pairs, thereby contributing
to the apparent non-convergence of the body-ordered energetics.
The correlation patterns reveal distinct behaviors between the two
density regimes: in the low ρ 8-mer, strong correlations are present
between bonded atom pairs, and non-negligible correlations also
persist between the intermolecular pairs. The high ρ 8-mer exhibits
stronger and more delocalized spin correlations across all pairs
within the cluster.

These results demonstrate that the “true” body-ordered ener-
getics of hydrogen 8-mers are inherently oscillatory and non-
converging. We note that the contrast between our results and the
mathematically proven exponential convergence of body-orders67

arises from the choice of E1 in the MBE. While our expansion ref-
erences itself to the “vacuum” (i.e., each sub-cluster is considered

FIG. 2. Body-order trends of 25 low ρ and 25 high ρ hydrogen 8-mers computed with DFT and MLIPs, as probed by Ṽ(m)
A of Eq. (7) and ∣∂Ṽ(m)

A /∂r∣ of Eq. (8). The raw
distribution of values is shown in lighter markers, and the mean values across the samples are shown with a darker outlined marker. The DFT mean values are presented
as crosses in the plots for the MLIPs.
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in complete isolation), considerations in Ref. 67 assume full aware-
ness of the entire local environment even for the sub-clusters, which
is more consistent with the stated goal of investigating the conver-
gence of MLIPs, even though it leaves the definition of E1 somewhat
vague. In Appendix C, we further unravel the dependence of the
convergence trends on the baseline choice and rationalize that for
energy-stable atomic clusters such as the hydrogen 8-mers of our
study, the observed oscillatory trend in the vacuum-referenced MBE
is reasonable under the choice of E1 as the isolated atom energy.

In light of the strong dependence of the body-ordered ener-
getics on the choice of the baseline energy E1, it might be more
appropriate to evaluate the convergence of the expansion by look-
ing at the magnitude of the forces that are independent of the choice
of E1. We compute the following quantity:

RRRRRRRRRRR

∂Ṽ(m)A
∂r

RRRRRRRRRRR

=

∑A(m)
∈A

√

1
m∑i ∣

∂V(m)
∂ri
∣

2

N!
m!(N−m)!

. (8)

The numerator is the sum of the root mean square (RMS) of the
norms of ∂V (m)

/∂ri for the canonically complete set of m-mers,
where the RMS of norms is computed over the atoms of a given
m-mer. The denominator performs a normalization analogous to
Eq. (7). As shown in the first panel of Fig. 2, for DFT, the magni-
tude of the BO forces does not converge by m = 8, indicating that
the slow convergence is not only a consequence of the choice of a
vacuum reference for the expansion, but also reflects the high degree
of electronic correlations for many of the sub-clusters.

IV. EFFECTIVE BODY-ORDEREDNESS OF MLIPS
We now analyze the “effective” body-orderedness of MLIPs

by training SOAP-BPNN, MACE, and PET on an hydrogen 8-mer
dataset and computing Ṽ(m)A and ∣∂Ṽ(m)A /∂r∣ from Eqs. (7) and (8).
The dataset includes both low ρ and high ρ 8-mers in a 1:1 ratio.
10 000 8-mers split into 8:1:1 proportions are used as the training,
validation, and test sets, with stratification between the ρ regimes.
All resulting models show energy and force RMSEs below 0.025
eV/atom (6.2% RMSE) and 0.375 eV/Å (15.6% RMSE, see Table S1).
The analysis is performed on 25 low ρ and 25 high ρ 8-mers in the
test set, for which the DFT reference values are available.

Figure 2 reveals that all MLIPs deviate from the DFT body-
order trends in both energies and forces and infer their own, effective
body-orders for the hydrogen 8-mers, with much smaller mag-
nitudes across all m. In SOAP-BPNN, body-orders of the low ρ
8-mers are fast-converging with m, whereas those of the high ρ 8-
mers exhibit an oscillatory, slow-converging behavior in Ṽ(m)A and
an overall increasing trend in ∣∂Ṽ(m)A /∂r∣. The spread of values
across individual samples is also much narrower for low ρ 8-mers
compared to high ρ 8-mers that reach a standard deviation (σ) of
0.481 eV and 3.704 eV/Å in energies and forces for m = 8.

In MACE, the body-order trends of Ṽ(m)A are fast-converging
for both densities with the significant contributions limited to m ≤ 4,
and ∣∂Ṽ(m)A /∂r∣ also exhibits the lowest values across all m. The
body-ordered contributions of both energies and forces are larger
in high ρ 8-mers than in low ρ 8-mers. The spread across individ-
ual samples is the narrowest among all MLIPs, with an average σ of

0.060 eV and 0.434 eV/Å observed for high ρ 8-mers. This suggests
that the effective body-ordering of MACE is applicable across many
samples with minimal variation. In PET, Ṽ(m)A shows an oscillating,
non-converging trend and ∣∂Ṽ(m)A /∂r∣ increases with m for both low
and high ρ 8-mers. While the magnitudes of Ṽ(m)A are higher for high
ρ 8-mers over low ρ 8-mers, those of ∣∂Ṽ(m)A /∂r∣ exhibit the reverse
trend, which is the opposite of the reference. PET shows moderate
spread of values compared to the other two models, where the largest
σ values of 0.239 eV and 1.475 eV/Å are observed for low ρ 8-mers.

In Fig. S1, we present the “per-m” RMSEs of the three MLIPs
on the sub-clusters of the test set 8-mers, assessing the accuracy
of the effective body-ordered energetics of the MLIPs. All three
models exhibit similarly large RMSEs on average for both energies
(0.325 eV/atom) and forces (1.21 eV/Å) for all m < 8. This corrob-
orates that the intuited body-ordered energetics are only effective
and significantly far from the DFT reference. In the supplementary
material, we also explore the body-order trends of the MLIPs when
E1 is no longer fixed to the isolated atom energy. We learn that
all MLIPs retain similar trends with notably smaller contributions
across all body-orders, with the exception of PET exhibiting slightly
larger ∣∂Ṽ(m)A /∂r∣ values for both low ρ and high ρ 8-mers.

V. EXPLICIT RESOLUTION OF REFERENCE
BODY-ORDERS

Next, we re-train the MLIPs on augmented datasets that aim
to resolve their body-orders to the DFT reference. Canonically com-
plete sets of m-mers, 2 ≤ m < 8, for 200 low ρ and 200 high ρ 8-mers
(98 400 new structures in total), are added to the training set. The
same is done for the validation and test sets, with 25 low ρ and 25
high ρ 8-mers each. Multiple models are trained at different augmen-
tation proportions (inclusion of all 98 400 m-mers is 1), and in doing
so, stratification is performed so that the complete set of canonical
sub-clusters for a given 8-atom configuration is included all at once.

Figure 3 shows that the DFT body-order trends are quickly
captured by both MACE and PET as the m-mers are added to the
training set. In fact, for both ρ 8-mers, near-complete resolution
is achieved for m ≤ 6 at 0.01 added m-mer proportion, and further
increase in the proportion quickly resolves the 6 ≤ m ≤ 8 contribu-
tions, faster for PET than MACE. This proves that while the MACE
and PET architectures have sufficient flexibility to learn the reference
body-order trends, without explicit resolution of the body-orders,
their inherent tendencies result in trends that are drastically different
from the reference. In SOAP-BPNN, m ≤ 4 contributions are also
resolved quickly at 0.01 added m-mer proportion, akin to the other
two models. SOAP-BPNN, however, struggles to capture the higher
body-order contributions at all added m-mer proportions, although
it still gradually approaches the reference values. Better resolution is
achieved for high ρ 8-mers than for low ρ 8-mers. In all MLIPs, the
resolution takes place consistently faster for lower m, which must be
related to how the dimensionality of the potential energy surfaces of
m-mers exponentially increases with m.

Figure 4 shows the energy and force RMSEs for the 8-mers and
their fragments. The RMSEs for the m-mers decrease monotoni-
cally for all MLIPs as more and more sub-clusters are augmented
to the dataset, as expected. For the 8-atom structures, SOAP-
BPNN and MACE exhibit a compromise in the accuracy of the full
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FIG. 3. Changes in the body-order trends of MLIPs when explicit resolution to the DFT reference is attempted. Mean Ṽ(m)
A and ∣∂Ṽ(m)

A /∂r∣ values across 25 low ρ and 25
high ρ test set hydrogen 8-mers are shown. Multiple plots are made for different m-mer proportions, where the proportion corresponds to the number of m-mers added over

all available m-mers for body-order resolution. In each panel, reference mean ∣∂Ṽ(m)
A /∂r∣ values from DFT are marked with crosses.

FIG. 4. Energy and force RMSEs of the MLIPs computed for the full structure 8-
mers (filled circles) and the sub-cluster m-mers (crosses) under different degrees
of body-order resolution achieved with the addition of m-mers to the training set.

configurations with the addition of sub-cluster m-mers in the
training dataset. The RMSEs generally increase as more m-mers
are incorporated, with MACE exhibiting a more pronounced
increase—by a factor of 3.4 in both the energy and force RMSEs
upon full augmentation. In PET, the RMSEs eventually decrease
to values that are lower than those before any m-mers are intro-
duced to the dataset. Among the considered MLIPs, PET is the only

architecture for which learning the reference body-ordered energet-
ics further improves the accuracy on the full structures.

VI. BODY-ORDERED INTERPRETATION
OF MLIP LEARNING DYNAMICS

Having established that in the absence of explicit fragments in
the training set, the MLIPs infer their own body-order trends, we
now investigate how these trends depend on the composition of the
training dataset. We first train the models on the sub-sampled ver-
sions of the original training set from Sec. IV in order to probe the
learning dynamics of the MLIPs in the context of body-orders. We
use dataset proportions ranging from 0.01 to 0.4 and keep the valida-
tion and test sets fixed. The learning curves are shared in Fig. S3. We
also repeat the exercise for datasets exclusively composed of either
10 000 low ρ 8-mers or 10 000 high ρ 8-mers. The resulting model
accuracies for the latter two cases are shared in Tables S2 and S3.

Figure 5 presents the body-order trends for the MLIPs trained
on different proportions of the original 8-mer dataset of Sec. IV.
In SOAP-BPNN, the model intuits an overall converging body-
order trend at 0.01 dataset proportion for both density regimes,
while assigning larger magnitudes for the higher ρ 8-mers. As the
dataset expands, the initial, converging trend is largely retained in
the low ρ 8-mers, with only a slight increase in the ∣∂Ṽ(m)A /∂r∣ val-
ues for the larger body-orders. For the high ρ 8-mers, the model
steadily increases the contributions for 3 ≤ m ≤ 8 until reaching the
final observed trend at the full dataset size. Note that the m = 2
contribution remains “pinned” in both ρ 8-mers.

MACE exhibits a fast-converging body-order trend at the
smallest dataset proportion. In Ṽ(m)A , this initial profile is kept con-
stant with minor fluctuations for both low ρ and high ρ 8-mers
under all dataset proportions. Even in ∣∂Ṽ(m)A /∂r∣, the initial trend
is largely kept constant in the low ρ 8-mers for all dataset sizes and is
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FIG. 5. Body-order trends of the MLIPs trained on different fractions of the original training dataset. Mean Ṽ(m)
A and ∣∂Ṽ(m)

A /∂r∣ values over 25 low ρ 8-mers and 25 high
ρ 8-mers are separately plotted. Note that the y-axis ranges are tailored for each model to focus on their individual learning behavior.

retained up to 0.16 dataset proportion in the high ρ 8-mers. Past this
proportion, the high ρ 8-mers start to exhibit relatively larger devi-
ations in ∣∂Ṽ(m)A /∂r∣ from the initial trend. Contrary to the other
two MLIPs, PET does not display any converging trend and exhibits
non-negligible contributions across all m even at the smallest dataset
proportion. As the dataset is further expanded, PET freely adapts
with no discernible trend in Ṽ(m)A and quickly increases the con-
tributions from higher m in ∣∂Ṽ(m)A /∂r∣, in stark contrast to the
behavior of other two models.

Most notably, we observe the tendency of MACE to prioritize
the use of lower body-orders in its learning, which is also faintly
present in SOAP-BPNN and absent in PET. Similar behaviors per-
sist when the models are exclusively trained on the low ρ 8-mers
or the high ρ 8-mers (see Figs. S4–S7). MACE consistently prefers
a fast-converging body-order trend, while SOAP-BPNN exhibits a
converging trend for the low-density-only case and does not for the
high-density-only case, and PET continues to show entirely arbi-
trary trends, especially in Ṽ(m)A . We attribute this distinct trend
of MACE to the over-representation of lower body-orders (see
Appendix D), which encourages the model to prioritize the use of
lower body-ordered in formation in the learning task. We conjec-
ture that the over-representation of lower body-orders restricts the
use of the higher body-ordered features or descriptors to its full
capacity, resulting in the limited capability of MACE to optimize its
body-orders as the dataset is further expanded.

One may wonder how much these trends depend on the details
of an architecture and the choice of hyperparameters. As we show
in the supplementary material, increasing the number of channels
or correlation order ν of MACE modulates the body-order trend but
does not change the overall fast-decaying tendency. Using nonlinear
interaction blocks68 in MACE alleviates the model from converg-
ing trends and induces an oscillatory, diverging behavior in Ṽ(m)A
more similar to PET. Changing the token size for PET leads to

changes in the body-order terms but not in their qualitative behav-
ior, which remains oscillatory and without a clear relation to that of
the underlying DFT reference.

VII. EXTRAPOLATIVE PERFORMANCE OF MLIPS
One common interpretation of the MBE is that once suffi-

cient convergence is reached in the body-ordered energetics, the
expansion can be generalized to any applicable system with good
accuracy. To assess this, we evaluate the extrapolative performance
of the MLIPs, which have shown varying trends of convergence in
their effective body-ordered energetics with respect to m. The energy
and force RMSEs are computed for a dataset of out-of-distribution
8-mers that have been further sampled from the intermediate den-
sity regime of the Cheng et al.23 bulk hydrogen dataset, between
the two density extrema from which the original 8-mers were sam-
pled. The intermediate density 8-mers are organized into quintiles,
where their original bulk hydrogen configurations exhibit densities
of 0.720, 0.876, 0.999, 1.14, and 1.25 g/cm3, respectively. The results
are presented in Fig. 6.

When the models are trained on both low ρ and high ρ 8-mers,
errors below 0.1 eV/atom are also observed in all three MLIPs for the
out-of-distribution intermediate density 8-mers. The lowest RMSEs
are consistently observed for PET, which achieves average RMSEs
of 0.0061 eV/atom for the energies and 0.148 eV/Å for the forces
across all intermediate density quintiles. The next best performance
is observed for MACE, with an energy RMSE of 0.0228 eV/atom for
the first quintile, below 0.02 eV/atom for all other quintiles, and an
average force RMSE of 0.239 eV/Å across all quintiles. SOAP-BPNN
exhibits average RMSEs of 0.0454 eV/atom and 0.674 eV/Å for the
energies and forces, respectively, which are still well within an order
of magnitude from the RMSEs observed for the original test set.

When the models are trained on the low ρ 8-mers only, the out-
of-distribution performance becomes worse for all three MLIPs. In
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FIG. 6. Energy (top) and force (bottom) RMSEs of the MLIPs computed across the entire density range. x axis denotes the different density regimes for which the RMSEs
have been computed. The two extrema are the original low ρ and high ρ regimes used in model training, and the five enumerated middle ticks correspond to the quintiles of
the out-of-distribution intermediate density regimes. Each column corresponds to a different training dataset combination, which is shaded in light green. Circles show the
RMSEs for the models trained on the 8-mers only, and the crosses show the RMSEs for the models trained on the 8-mers and their sub-clusters.

fact, an overall increasing trend in the RMSEs is observed from the
first intermediate density quintile (closest to low ρ) all the way to the
high ρ 8-mers. For MACE, RMSEs for the fifth quintile and high ρ
are much worse than those of the other quintiles, exhibiting up to
two orders of magnitude difference compared to the low ρ 8-mers.
For PET, the RMSEs are relatively more constant across the inter-
mediate density quintiles and high ρ, with average values of 0.0296
eV/atom and 0.409 eV/Å for the energies and forces. The analogous
reverse trend is observed when the models are trained on the high
ρ 8-mers only, where the RMSEs for the intermediate ρ and low ρ
8-mers become significantly higher than before and show an increas-
ing trend from the fifth quintile (closest to high ρ) to the first quintile
and low ρ.

Figure 6 also presents the RMSEs for the intermediate ρ 8-mers
when the body-order trends of the models are explicitly resolved
to the DFT reference (Sec. V). MACE exhibits performance degra-
dation in all cases, and the degradation is far more pronounced
when trained on the low or high ρ 8-mers only. SOAP-BPNN shows
reduced RMSEs for the case of high ρ 8-mers only and slight degra-
dation in the other two cases. PET consistently displays slightly
lower RMSEs for the out-of-distribution 8-mers when trained on
the body-order-resolved datasets. This showcases the flexibility of
PET to learn simultaneously the energetics of target 8-mers as well
as their sub-clusters and then use the extra information from the
sub-clusters to achieve further improvements in the RMSEs. In
the supplementary material, we show that these trends are gener-
ally robust to changes in the hyperparameters of MACE and PET,
except when nonlinear interaction blocks are used in MACE, which

mitigates the previously observed performance degradation with
body-order resolution to the DFT reference.

Altogether, the generalizability of the MLIPs does not correlate
clearly with any specific convergence trends in their body-orders.
The explicit resolution of the body-orders also does not bring forth
dramatic improvements in the extrapolative performance of the
MLIPs. This hints at the absence of any practical benefit in enforcing
the models to infer fast converging body-orders or directly learn the
reference body-ordered energetics. If anything, such complexities
can limit the learning capacity and add strain to the training exercise,
potentially degrading both in- and out-of-distribution performance.

VIII. CONCLUSION AND OUTLOOK
In this study, we have carefully analyzed the behavior of three

different MLIPs in terms of their “body-orderedness,” examining
the body-ordered energy and force trends for hydrogen clusters
extracted from bulk simulations at different densities, comparing
between DFT and the MLIPs trained on a number of different
dataset makeups. In the reference DFT calculations, as seen in many
other systems, we first observed that the MBE of energy shows
a non-converging, oscillatory behavior for both “molecular” (low
density) and “atomic” (high density) hydrogen clusters. The effect
cannot simply be dismissed as an artifact of DFT, as the trend is also
reproduced in state-of-the-art DMRG calculations. Even though the
oscillatory behavior can be explained in terms of the choice of the
isolated atom energy as the baseline, higher body-order terms are
also large for force-based metrics, which are insensitive to the choice
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of the baseline. An analysis of the electronic structure of the frag-
ments points to the strong spin correlations as the origin of high
body-order terms.

When trained exclusively on 8-mers extracted from realis-
tic bulk structures, the MLIPs all learn an effective MBE that is
far from the reference—without any adverse effect on their in-
domain accuracy. While the effective MBE is largely arbitrary for
all models, MACE tends to prioritize the use of lower body-orders
for a fast-converging trend. When the sub-clusters are incorpo-
rated into the training set to explicitly resolve the body-orders to
the reference, MACE and PET quickly converge to the reference
body-ordered energetics, but the relatively low descriptive power
of SOAP-BPNN limits its accuracy on the m-mers and hence its
ability to learn the reference MBE. We also observe that explicit
body-order resolution degrades the accuracy on the full structures
of interest for MACE, while it does not for PET. Contrary to what
one might expect, the fast decay of the effective MBE does not trans-
late into more robust extrapolative behavior. Explicitly resolving the
body-orders does not improve the extrapolative performance for
SOAP-BPNN, degrades it for MACE, and improves it slightly for
PET.

While our experiments focus on one comparatively simple sys-
tem, they suggest that there is little value in targeting explicitly the
MBE, or in designing models that implicitly favor learning a fast-
decaying effective body-ordered decomposition. On the contrary, it
appears that an unconstrained architecture such as PET that does
not build upon a hierarchical expansion of the neighbor density
correlations but simply aims to achieve a highly expressive approxi-
mation of the target demonstrates consistently the best performance,
for both in- and out-of-distribution tasks.

The “paradox” of the MBE is resolved by recognizing that mod-
els trained on reasonably stable structures do not have to reproduce
the MBE of the target. The large deviation between the true and
empirical trends is a simple consequence of the fact that, for a model
trained on those reasonable structures, the fragments that appear in
the decomposition are highly distorted and amount to extrapolative
predictions. We also speculate that the tendency of MACE to priv-
ilege a fast-decaying effective body-ordered energy decomposition
may be a consequence of the “contamination” of high-order cor-
relations with low-body-order components. We have shown in the
supplementary material that the newly proposed nonlinear interac-
tion blocks of MACE can alleviate this effect to an extent.68 Given
the strategy to “purify” the body-ordered components of the closely
related atomic cluster expansion,27 it could be interesting to inves-
tigate the behavior of a “purified MACE” architecture, to verify our
hypothesis and observe if there are any consequences for accuracy
and transferability. Overall, our observations suggest that, despite
being an attractive approximation framework, and despite the strong
mathematical connection to many widely used MLIP frameworks,
the body-order decomposition is not especially useful as a guiding
principle to design MLIPs.

SUPPLEMENTARY MATERIAL

See the supplementary material for further details of the
ab initio calculations, RMSE values, and results of additional exper-
iments with variations in the dataset, baseline energy E1, and ML
model hyperparameters.
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APPENDIX A: LINEAR BODY-ORDERED MODELS

In linear and kernel-based MLIPs with the locality ansatz, the
descriptors are often built to describe atom-centered body-order
correlations. One example is the Gaussian Approximation Poten-
tial (GAP)14 model utilizing SOAP descriptors,33 which is a 3-body
descriptor. In some special cases (e.g., moment-tensor potential15

and ACE16), xi of Eq. (5) can be expressed in terms of multiple
body-ordered components,

xi =
νmax

⊕

ν=1
∑

j1 ,...,jν≠i
φν
(rij1 , . . . , rijν) fc(rij1 , . . . , rijν). (A1)

Local environments are described at successively increasing body-
orders (here expressed in terms of ν) by functions φν that describe

J. Chem. Phys. 164, 064121 (2026); doi: 10.1063/5.0303302 164, 064121-9

© Author(s) 2026

 13 February 2026 13:28:25

https://pubs.aip.org/aip/jcp
https://doi.org/10.60893/figshare.jcp.c.8249812
https://doi.org/10.60893/figshare.jcp.c.8249812
https://doi.org/10.24435/materialscloud:q7-da
https://doi.org/10.24435/materialscloud:q7-da


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

the body-order ν + 1, and these descriptors are concatenated
together to obtain xi. Since there exist separate “blocks” correspond-
ing to the different body-orders, the same separation can be applied
to the trained weights of the model, which results in Eq. (6).

In such models, body-ordered descriptors of Eq. (A1) often
contain self-interacting terms, i.e., contributions where j1 = j2.
In ACE, allowing for such self-correlations, which is sometimes
referred to as the “density trick,” is what guarantees favorable
scaling with the number of atoms in the environments. Chong
et al.26 have shown that the presence of such self-interactions leads
to a model learning behavior where the apparent correspondence
between the summands of Eqs. (1) and (6) cannot be captured by
the model. More recently, Ho et al.27 proposed a purification oper-
ator that removes the self-correlation contributions from the ACE
descriptors, which allows the model to recover the above-mentioned
correspondence in some specific cases (see Sec. V A of Chong
et al.26).

APPENDIX B: BODY-ORDERED ENERGETICS
OF 8-MER BEFORE AND AFTER FRAGMENTATION

To further verify that the slowly converging body-ordered ener-
getics observed from the quantum chemical calculations are not
stemming from DFT artifacts, namely the self-interaction error, we
consider the “fragmentation” of an 8-mer into two 4-mer fragments
and the changes in the body-ordered energetics thereof at different
theory levels. The 8-mer of interest is constructed by first arrang-
ing four hydrogen atoms into a square within the xy-plane with a
bond length of 1.4 Å, then replicating this configuration, rotating
it by 45○, and offsetting the replica in the z-direction by a distance
that also results in similar nearest-neighbor bond lengths. Taking
this as the pre-fragmentation configuration, we then generate the

FIG. 7. Body-ordered energetics of an 8-mer before (left) and after (right) frag-
mentation into two 4-mer fragments separated by 50 Å. Calculations are done
with DFT as well as DMRG with STO-6G and cc-pVDZ basis sets. Corresponding
atomic configurations are shown on top of the plots. Note that the y-axis of the two
plots is presented in different scales.

post-fragmentation configuration by further increasing the offset
distance between the two replicas by 50 Å.

In Fig. 7, a similar oscillatory trend is observed across all
calculations for the 8-mer before fragmentation. When the clus-
ter is separated into fragments, both DMRG calculations show a
strict convergence of Ṽ(m)A to 0 for m > 4, which is the physically
reasonable trend. On the contrary, DFT results contain unphysi-
cal, residual contributions for m > 4 that originate from the self-
interaction error. These results prove that the prevalent oscillatory
body-ordered energetics capture the true, physical MBE trends at
the atomic level for covalent systems and are not a consequence of
the DFT self-interaction error.

APPENDIX C: DEPENDENCE OF BODY-ORDER
CONVERGENCE ON BASELINE ENERGY

The alternating behavior of the body-ordered energies might
appear strange but can easily be explained as follows. Begin by noting
that V (m) can be expressed as the cohesive energy of the m-mer clus-
ter (i.e., E(m)

−m ⋅ E1) minus the sub-cluster contributions. Assume
that this term is proportional to m, E(m)

−m ⋅ E1 ≈ mϵ (which is true
in the asymptotic limit, but not necessarily for smaller clusters).
Then, it is easy to see that

V(2) = E(2) − 2E1 ≈ 2ϵ,

V(3) = E(3) − 3E1 −∑
i<j

V(2)(ri, rj) ≈ 3ϵ − 6ϵ = −3ϵ,

V(4) = E(4) − 4E1 −∑
i<j

V(2)(ri, rj)

− ∑

i<j<k
V(3)(ri, rj , rk) ≈ 4ϵ − 12ϵ + 12ϵ = 4ϵ,

(C1)

which corresponds to the alternating, diverging trend. The fact that
this trend continues can be proved by induction,

V(m) = E(m) −mE1 −
m−1

∑

k=2
V(k)

m!
k!(m − k)!

, (C2)

assuming that up to (m − 1)th body-order V (k)
≈ (−1)kkϵ, one sees

that the summation evaluates to m(1 − (−1)m
)ϵ so that indeed

V (m)
= (−1)mmϵ.
These considerations justify the oscillatory behavior observed

for the body-ordered energies and indicate that adjusting E1 to an
effective value that zeros out ϵ would facilitate the convergence of the
expansion—consistent with the derivation in Ref. 67 that assumes
the definition of a system-specific, effective energy reference.

APPENDIX D: OVER-REPRESENTATION
OF LOW BODY-ORDERS IN MACE

Here, we discuss two “channels” that lead to the over-
representation of the low body-order contributions in MACE. First,
consider the initial features of MACE, which are defined in terms of
ACE based on the density trick, as discussed in Sec. II A. Since this
implies the presence of self-interaction terms in the formalism,16,21

all higher body-order features also contain effectively lower body-
order contributions, which make the descriptors deviate from the
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strictly canonical expression of the body orders. That is, in the sum-
mation of Eq. (A1), there exist terms where jk = jl. Recognizing their
presence, we can re-express the descriptors by decomposing their
contributions, as done in the following for the example of ν = 2,

∑

j1 ,j2≠i
φ2
(rij1 , rij2) fc(rij1 , rij2) = x2

i,self + x2
i,pure, (D1)

where the self-interacting terms are the one such defined from the
same atom j1 = j2, namely

x2
i,self ∶=∑

j
φ2
(rij , rij) fc(rij , rij), (D2)

while x2
i,pure contains all the remaining pure ν = 2 terms such that

j1 ≠ j2. Because the summation in x2
i,self runs over only one index, the

self-interaction term is a contribution with an effective lower body-
order. Extending this argument to every increasing ν, this proves
that the basic ACE features, grounded in the density trick, imply that
every ν-term contains all the lower body-orders. As such, also every
feature in MACE contains an over-representation of lower orders.
Moreover, as shown in Ref. 69 (see Table 2), expansion terms con-
taining self-interaction give rise to an ill-conditioned representation.
Therefore, one can infer that the terms for lower body-orders are of
a magnitude that is comparable to that of the pure ones.

The second channel is provided by the update function, con-
taining also a residual connection, used in the MACE architec-
ture as defined in Ref. 37, which both contribute to the over-
representation of lower body-orders in the effective descriptors. The
update function is defined as [from Ref. 37, Eq. (12)]

h(t+1)
i,L = U(m(t)i,L , h(t)i,L ) ∶= U(t)kL ⋅m

(t)
i,L +W(t)

zi ,kL ⋅ h
(t)
i,L , (D3)

where U is the update function, h(t)i,L are the features of the model
after the tth step of message passing, m(t)i,L are the messages at the
same steps, containing higher body order terms, and U(t)kL and W(t)

zi ,kL
are learnable weights. At the core of the computation of the mes-
sages, there are the same ACE contractions with self-interactions
discussed above, and thus, they have an over-representation of lower
body-orders. Moreover, in defining the new features, the skip con-
nections allow us to utilize also the previous ones, which themselves
contain the over-representation of lower body-orders.
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