Tong Jiang

Theoretical Chemist

I am a postdoctoral fellow with Prof. Joonho Lee at Harvard University (2023–). I am one of three postdoctoral scholars selected across Harvard’s FAS Division of Science to hold a Gordon & Betty Moore Foundation fellowship (2025–). I earned my Ph.D. in Chemistry from Tsinghua University (2018–2023) with Prof. Zhigang Shuai; my dissertation, Response Theory for Matrix Product States in Frequency Space, received the university dissertation award. My research targets two main directions:

  • Non-equilibrium dynamics and spectroscopy — how coupled electrons, excitons, and phonons control photophysics, energy transfer, and charge transport in energy materials such as organic semiconductors, molecular aggregates, and perovskites.
  • Correlated electronic structure — how electron correlation governs energetics, binding, and magnetism in complex systems, from closed-shell molecules to transition-metal chemistry and emerging quantum materials.

To tackle these problems, I develop first-principles methods for nonperturbative electron–phonon dynamics, build quantum Monte Carlo and tensor-network frameworks for strongly correlated systems, and explore machine-learning and quantum-computing crossovers to bring new predictive power to materials simulation.

Research Overview

Email: tongjiang@g.harvard.edu or tj.theochem@gmail.com

Publications (Google Scholar)

2025

  1. Resolving the Body-Order Paradox of Machine Learning Interatomic Potentials.
    S. Chong, T. Jiang, M. Domina, F. Bigi, F. Grasselli, J. Lee, M. Ceriotti
    arXiv:2509.14146
  2. Walking through Hilbert Space with Quantum Computers.
    T. Jiang, J. Zhang, M. Baumgarten, M.-F. Chen, H.Q. Dinh, A. Ganeshram, N. Maskara, A. Ni, J. Lee
    Chem. Rev. 125, 9, 4569–4602 (2025) |
  3. Why sulfur is important in lincosamide antibiotics.
    K.J.Y. Wu, E.V. Aleksandrova, P.J. Robinson, A.E. Benedetto, M. Yu, B.I.C. Tresco, D.N.Y. See, T. Jiang, A. Ramkissoon, C.F. Dunand, M.S. Svetlov, J. Lee, Y.S. Polikanov, A.G. Myers
    Chem, 102480 (2025) |
  4. Excited State Structure and Decay Rates for Aggregates.
    Z. Shuai, Q. Sun, J. Ren, T. Jiang, W. Li
    Aggregate, 0:e70013 (2025) |
  5. Unbiasing Fermionic Auxiliary-Field Quantum Monte Carlo with Matrix Product State Trial Wavefunctions.
    T. Jiang, B. O'Gorman, A. Mahajan, J. Lee
    Phys. Rev. Research, 7, 013038 (2025) |
  6. Humanity's Last Exam.
    arXiv:2501.14249

2024

  1. TD-DMRG Study of Exciton Dynamics with both Thermal and Static Disorders for Fenna-Matthews-Olson Complex.
    Z. Sheng, T. Jiang, W. Li, Z. Shuai
    J. Chem. Theory Comput., 20, 15, 6470-6484 (2024) |
  2. Improved Modularity and New Features in ipie: Toward Even Larger AFQMC Calculations on CPUs and GPUs at Zero and Finite Temperatures.
    T. Jiang, M. Baumgarten, P.-F. Loos, A. Mahajan, A. Scemama, S.F. Ung, J. Zhang, F.D. Malone, J. Lee
    J. Chem. Phys. 161, 162502 (2024) |

2023

  1. Automatic Screen-out of Ir(III) Complex Emitters by Combined Machine Learning and Computational Analysis.
    Z. Cheng, J. Liu, T. Jiang, M. Chen, F. Dai, Z. Gao, G. Ke, Z. Zhao, Q. Ou
    Adv. Opt. Mat, 11(18), 23011093 (2023) |
  2. Unified Definition of Exciton Coherence Length for Exciton-Phonon Coupled Molecular Aggregates.
    T. Jiang, J. Ren, Z. Shuai
    J. Phys. Chem. Lett., 14, 4541–4547 (2023) |

2022

  1. Influence of Intermolecular Packing on Light Emitting Efficiency and Carrier‑Mobility of Organic Semiconductors: Theoretical Descriptor for Molecular Design.
    Q. Sun, T. Jiang, Q. Ou, Q. Peng, Z. Shuai
    Adv. Opt. Mat., 11(5), 2202621 (2022) |
  2. Time-Dependent Density Matrix Renormalization Group Method for Quantum Dynamics in Complex Systems.
    J. Ren, W. Li, T. Jiang, Y. Wang, Z. Shuai
    WIREs Comput Mol Sci., e1614 (2022) |

2021

  1. Intermolecular Charge-Transfer-Induced Strong Optical Emission from Herringbone H‑Aggregates.
    Q. Sun, J. Ren, T. Jiang, Q. Peng, Q. Ou, Z. Shuai
    Nano Lett., 21, 5394−5400 (2021) |
  2. Time-Dependent Density Matrix Renormalization Group Coupled with n-Mode Representation Potentials for the Excited State Radiationless Decay Rate: Formalism and Application to Azulene.
    J. Ren, Y. Wang, W. Li, T. Jiang, Z. Shuai
    Chin. J. Chem. Phys., 34(5), 565-582 (2021) |
  3. Chebyshev Matrix Product States with Canonical Orthogonalization for Spectral Functions of Many-Body Systems.
    T. Jiang, J. Ren, Z. Shuai
    J. Phys. Chem. Lett., 12, 9344-9352 (2021) |

2020

  1. Frequency Domain Density Matrix Renormalization Group.
    T. Jiang, J. Ren, Z. Shuai
    Chem. J. Chin. Univ, 41, 2610~2628 (2020) |
  2. A General Automatic Method for Optimal Construction of Matrix Product Operators Using Bipartite Graph Theory.
    J. Ren, W. Li, T. Jiang, Z. Shuai
    J. Chem. Phys., 153, 084118 (2020) |
  3. Finite Temperature Dynamical Density Matrix Renormalization Group for Spectroscopy in Frequency Domain.
    T. Jiang, W. Li, J. Ren, Z. Shuai
    J. Phys. Chem. Lett., 11, 3761−3768 (2020) |