I am currently a postdoctoral fellow in the group led by Joonho Lee at Harvard University. Prior to this, I completed my Ph.D. thesis “Response Theory for the Matrix Product States in Frequency Space” under the supervision of Zhigang Shuai at Tsinghua University from 2018 to 2023.

My research focuses on the quantum dynamics and electronic structure of correlated molecular systems. I dive into cutting-edge techniques like tensor networks and auxiliary-field quantum Monte Carlo, while also exploring quantum computing algorithms to push the boundaries of quantum simulations.

Email: tongjiang@g.harvard.edu

Link: Google Scholar | Github

Publications:

  1. TD-DMRG Study of Exciton Dynamics with both Thermal and Static Disorders for Fenna-Matthews-Olson Complex.
    Z. Sheng, T. Jiang, W. Li$^*$, Z. Shuai$^*$
    J. Chem. Theory Comput., 20, 15, 6470-6484 (2024)
  2. Walking through Hilbert Space with Quantum Computers.
    T. Jiang$^{\dagger}$, J. Zhang$^{\dagger}$, M. Baumgarten$^{\dagger}$, M.-F. Chen, H.Q. Dinh, A. Ganeshram, N. Maskara, A. Ni, J. Lee$^*$
    arXiv:2407.11672
  3. Improved Modularity and New Features in ipie: Toward Even Larger AFQMC Calculations on CPUs and GPUs at Zero and Finite Temperatures.
    T. Jiang, M. Baumgarten, P.-F. Loos, A. Mahajan, A. Scemama, S.F. Ung, J. Zhang, F.D. Malone, J. Lee$^*$
    J. Chem. Phys. 161, 162502 (2024)
    arXiv:2406.16238
  4. Unbiasing Fermionic Auxiliary-Field Quantum Monte Carlo with Matrix Product State Trial Wavefunctions.
    T. Jiang, B. O'Gorman, A. Mahajan, J. Lee$^*$
    arXiv:2405.05440
  5. Automatic Screen-out of Ir(III) Complex Emitters by Combined Machine Learning and Computational Analysis.
    Z. Cheng, J. Liu, T. Jiang, M. Chen, F. Dai, Z. Gao, G. Ke, Z. Zhao, Q. Ou
    Adv. Opt. Mat, 11(18), 23011093 (2023)
    ChemRxiv
  6. Unified Definition of Exciton Coherence Length for Exciton-Phonon Coupled Molecular Aggregates.
    T. Jiang, J. Ren, Z. Shuai$^*$
    J. Phys. Chem. Lett., 14, 4541–4547 (2023)
  7. Influence of Intermolecular Packing on Light Emitting Efficiency and Carrier‑Mobility of Organic Semiconductors: Theoretical Descriptor for Molecular Design.
    Q. Sun, T. Jiang, Q. Ou, Q. Peng, Z. Shuai$^*$
    Adv. Opt. Mat., 11(5), 2202621 (2022)
  8. Time-dependent density matrix renormalization group method for quantum dynamics in complex systems.
    J. Ren, W. Li, T. Jiang, Y. Wang, Z. Shuai$^*$
    WIREs Comput Mol Sci., e1614 (2022)
  9. Intermolecular Charge-Transfer-Induced Strong Optical Emission from Herringbone H‑Aggregates.
    Q. Sun, J. Ren, T. Jiang, Q. Peng, Q. Ou, Z. Shuai$^*$
    Nano Lett., 21, 5394−5400 (2021)
  10. Time-Dependent Density Matrix Renormalization Group Coupled with n-Mode Representation Potentials for the Excited State Radiationless Decay Rate: Formalism and Application to Azulene.
    J. Ren, Y. Wang, W. Li, T. Jiang, Z. Shuai$^*$
    Chin. J. Chem. Phys., 34(5), 565-582 (2021)
    ChemRxiv
  11. Chebyshev Matrix Product States with Canonical Orthogonalization for Spectral Functions of Many-Body Systems.
    T. Jiang, J. Ren, Z. Shuai$^*$
    J. Phys. Chem. Lett., 12, 9344-9352 (2021)
    ChemRxiv
  12. Frequency Domain Density Matrix Renormalization Group.
    T. Jiang, J. Ren, Z. Shuai$^*$
    Chem. J. Chin. Univ, 41, 2610~2628 (2020)
  13. A general automatic method for optimal construction of matrix product operators using bipartite graph theory.
    J. Ren, W. Li, T. Jiang, and Z. Shuai$^*$
    J. Chem. Phys., 153, 084118 (2020)
    arXiv:2006.02056
  14. Finite Temperature Dynamical Density Matrix Renormalization Group for Spectroscopy in Frequency Domain.
    T. Jiang, W. Li, J. Ren, and Z. Shuai$^*$
    J. Phys. Chem. Lett., 11, 3761−3768 (2020)